# Copyright (C) 2024, UChicago Argonne, LLC # Licensed under the 3-clause BSD license. See accompanying LICENSE.txt file # in the top-level directory. """ Unit tests for timeline. """ import cProfile import datetime import pstats from _decimal import Underflow, Overflow from pprint import pformat import random from pstats import SortKey from typing import List import numpy as np import numpy.testing as npt import pandas as pd from dateutil.parser import parse as date_parse from pyspark.sql import SparkSession, DataFrame import pyspark.sql.functions as F from pyspark.sql.types import StructType, StructField, TimestampType, StringType from Ocean.schema_lookup import schema_bitmask from Octeres.bitmask import BASE_DTYPE_MAX from Octeres.bitmask import eb from Octeres.bitmask.bitmask_lite import LiteBitmask, LiteBitmaskSlots from Octeres.data_generation import EventGeneration from Octeres.forthwith import FORMAT_DATE_DAY from Octeres.timeline import Dependency_Funcs, TLCollisionOverlap, TimelinePit, TimelineParallel from Octeres.timeline import Event_Handler from Octeres.timeline import ( Timeline, sum_array, TLEvent, TLPointInTime, Event_Direction, ) from Octeres.timeline import TimelineDict, TimelineMask from Octeres.timeline import reduce_holes, Point_in_Time from Octeres.util import superprint, df_to_lstofdct import pytest try: import dask except ImportError: dask = None pd.set_option("display.max_rows", None) pd.set_option("display.max_columns", None) pd.set_option("display.width", 512) pd.set_option("display.max_colwidth", None) pd.set_option("display.float_format", "{:.6f}".format) class Test_Timeline: @classmethod def setup_class(cls): machine_name = "test" range_start = date_parse("2015-01-01") range_end = date_parse("2015-02-15") base_mask = eb.zeros(8) cls.tl = Timeline(machine_name, range_start, range_end, base_mask) def test_possible_unit_seconds(self): tl = self.tl possible_unit_seconds = tl.possible_unit_seconds correct_unit_seconds = (tl.range_end - tl.range_start).total_seconds() * len(tl.base_mask) assert possible_unit_seconds == correct_unit_seconds # def test_prepare_event_timeline_00(self): # #TODO # pass # # def test_group_timeline_00(self): # #TODO # pass # # def test_normalize_timeline_00(self): # #TODO # pass # # def test_mask_timeline_to_mag_timeline_00(self): # #TODO # pass # def test_search_timeline_for_holes_00(self): mask_timeline = TimelineMask() mask_timeline.append((date_parse("2017-01-01"), eb.ones(8))) mask_timeline.append((date_parse("2017-01-02"), eb.ones(8))) mask_timeline.append((date_parse("2017-01-03"), eb.array([1, 0, 1, 1, 1, 1, 1, 1]))) mask_timeline.append((date_parse("2017-01-04"), eb.ones(8))) holes = self.tl.search_timeline_for_holes(mask_timeline) assert len(holes) == 1 correct_ts = date_parse("2017-01-03") correct_te = date_parse("2017-01-04") correct_delta = eb.array([0, 1, 0, 0, 0, 0, 0, 0]) hole_ts = holes[0][0] hole_te = holes[0][1] hole_delta = holes[0][2] superprint(correct_delta) superprint(hole_delta) assert correct_ts == hole_ts assert correct_te == hole_te assert (correct_delta == hole_delta).all() def test_search_timeline_for_holes_01(self): mask_timeline = TimelineMask() mask_timeline.append((date_parse("2017-01-01"), eb.array([1, 0, 1, 1, 1, 1, 1, 1]))) mask_timeline.append((date_parse("2017-01-02"), eb.array([1, 0, 1, 1, 1, 1, 1, 1]))) mask_timeline.append((date_parse("2017-01-03"), eb.array([1, 0, 1, 1, 1, 1, 1, 1]))) mask_timeline.append((date_parse("2017-01-04"), eb.array([1, 0, 1, 1, 1, 1, 1, 1]))) mask_timeline.append((date_parse("2017-01-05"), eb.array([1, 0, 1, 1, 1, 1, 1, 1]))) mask_timeline.append((date_parse("2017-01-06"), eb.array([1, 0, 1, 1, 1, 1, 1, 1]))) holes = self.tl.search_timeline_for_holes(mask_timeline) assert len(holes) == 1 correct_delta = eb.array([0, 1, 0, 0, 0, 0, 0, 0]) ts, te, hole_delta = holes[0] assert ts == date_parse("2017-01-01") assert te == date_parse("2017-01-06") assert (correct_delta == hole_delta).all() # def test_calculate_area_00(self): # #TODO # pass def test_collision_detection_00(self): base_mask = self.tl.base_mask tl = self.tl event_lst = list() event_mask = base_mask.copy() event_mask[0:3] = 1 dct = dict( pk="an_event", event_type_name="job", bitmask=event_mask, time_start=date_parse("2015-02-03 00:00:00"), time_end=date_parse("2015-02-04 00:00:00"), ) event_lst.append(dct) event_mask = base_mask.copy() event_mask[1] = 1 dct = dict( pk="an_event2", event_type_name="job", bitmask=event_mask, time_start=date_parse("2015-02-03 01:00:00"), time_end=date_parse("2015-02-03 02:00:00"), ) event_lst.append(dct) timeline_lst = tl.prepare_event_timeline(event_lst) timeline_dct = tl.group_timeline(timeline_lst) timeline_sorted = tl.sort_timeline(timeline_dct) collisions = tl.find_collisions_timeline(timeline_sorted) for collision in collisions: superprint(collision) assert len(collisions) == 1 def test_collision_detection_01(self): # https://pandas.pydata.org/pandas-docs/version/0.21.1/generated/pandas.Timestamp.to_datetime.html base_mask = self.tl.base_mask tl = self.tl event_lst = list() event_mask = base_mask.copy() event_mask[0:3] = 1 dct: TLEvent = dict( pk="an_event", event_type_name="job", bitmask=event_mask, time_start=pd.Timestamp(date_parse("2015-02-03 00:00:00")), time_end=pd.Timestamp(date_parse("2015-02-04 00:00:00")), ) event_lst.append(dct) event_mask = base_mask.copy() event_mask[1] = 1 dct: TLEvent = dict( pk="an_event2", event_type_name="job", bitmask=event_mask, time_start=pd.Timestamp(date_parse("2015-02-03 01:00:00")), time_end=pd.Timestamp(date_parse("2015-02-03 02:00:00")), ) event_lst.append(dct) timeline_lst: List[TLPointInTime] = tl.prepare_event_timeline(event_lst) timeline_dct: TimelineDict = tl.group_timeline(timeline_lst) timeline_sorted: TimelinePit = tl.sort_timeline(timeline_dct) tl.print_timeline(timeline_sorted) collisions: List[TLCollisionOverlap] = tl.find_collisions_timeline(timeline_sorted) for collision in collisions: superprint(collision) assert len(collisions) == 1 def test_full_stack(self): base_mask = self.tl.base_mask tl = self.tl possible_unit_seconds = tl.possible_unit_seconds event_handler = Event_Handler() event_lst = list() event_mask = base_mask.copy() event_mask[0:3] = 1 event_dct = event_handler.get_event( event_type_name="job", bitmask=event_mask, time_start=date_parse("2015-02-03"), time_end=date_parse("2015-02-04"), ) event_lst.append(event_dct) correct_unit_seconds = (event_dct["time_end"] - event_dct["time_start"]).total_seconds() * sum_array(event_mask) correct_possible_unit_seconds = (tl.range_end - tl.range_start).total_seconds() * len(tl.base_mask) timeline_lst = tl.prepare_event_timeline(event_lst) timeline_dct = tl.group_timeline(timeline_lst) timeline_sorted = tl.sort_timeline(timeline_dct) # mask_timeline = tl.normalize_timeline(timeline_sorted, test_negative=True) mask_timeline = tl.normalize_timeline_pit(timeline_sorted) mask_timeline = tl.sum_timeline(mask_timeline, test_negative=False) tl.print_timeline(mask_timeline, binary=True) mask_timeline = tl.flatten_timeline(mask_timeline) mask_timeline = tl.isolate_timeline_range(mask_timeline) # tl.print_timeline(mask_timeline) mag_timeline = tl.mask_timeline_to_mag_timeline(mask_timeline) consumed_unit_seconds = tl.calculate_area(mag_timeline) # return consumed_unit_seconds, possible_unit_seconds, mag_timeline assert round(abs(consumed_unit_seconds - correct_unit_seconds), 4) == 0 assert possible_unit_seconds == correct_possible_unit_seconds def test_find_event_dependencies_00(self): base_mask = self.tl.base_mask tl = self.tl event_handler = Event_Handler() event_lst = list() event_mask = base_mask.copy() event_mask[0] = 1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 00:00:00"), time_end=date_parse("2015-02-04 00:00:00"), ) event_a_pk = event_dct["pk"] event_lst.append(event_dct) # joint events in time VVV ^^^ event_mask = base_mask.copy() event_mask[0] = 1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 12:00:00"), time_end=date_parse("2015-02-05 00:00:00"), ) event_b_pk = event_dct["pk"] event_lst.append(event_dct) dependency_functions = list() dependency_functions.append(Dependency_Funcs.dep_time) dependency_functions.append(Dependency_Funcs.dep_space_all) event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions) assert len(event_dependancies) == 2 grouped_dependancies = tl.merge_event_dependencies(event_dependancies) assert len(grouped_dependancies) == 2 assert event_a_pk in grouped_dependancies assert event_b_pk in grouped_dependancies[event_a_pk] assert event_b_pk in grouped_dependancies assert event_a_pk in grouped_dependancies[event_b_pk] def test_find_event_dependencies_01(self): base_mask = self.tl.base_mask tl = self.tl event_handler = Event_Handler() event_lst = list() event_mask = base_mask.copy() event_mask[0] = 2 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 00:00:00"), time_end=date_parse("2015-02-04 00:00:00"), ) event_a_pk = event_dct["pk"] event_lst.append(event_dct) # joint events in time VVV ^^^ event_mask = base_mask.copy() event_mask[0] = 1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 12:00:00"), time_end=date_parse("2015-02-05 00:00:00"), ) event_b_pk = event_dct["pk"] event_lst.append(event_dct) dependency_functions = list() dependency_functions.append(Dependency_Funcs.dep_time) dependency_functions.append(Dependency_Funcs.dep_space_all) event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions) assert len(event_dependancies) == 2 grouped_dependancies = tl.merge_event_dependencies(event_dependancies) assert len(grouped_dependancies) == 2 assert event_a_pk in grouped_dependancies assert event_b_pk in grouped_dependancies[event_a_pk] assert event_b_pk in grouped_dependancies assert event_a_pk in grouped_dependancies[event_b_pk] def test_find_event_dependencies_02(self): base_mask = self.tl.base_mask tl = self.tl event_handler = Event_Handler() event_lst = list() event_mask = base_mask.copy() event_mask[0] = -1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 00:00:00"), time_end=date_parse("2015-02-04 00:00:00"), ) event_a_pk = event_dct["pk"] event_lst.append(event_dct) # joint events in time VVV ^^^ event_mask = base_mask.copy() event_mask[0] = 1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 12:00:00"), time_end=date_parse("2015-02-05 00:00:00"), ) event_b_pk = event_dct["pk"] event_lst.append(event_dct) dependency_functions = list() dependency_functions.append(Dependency_Funcs.dep_time) dependency_functions.append(Dependency_Funcs.dep_space_all) event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions) assert len(event_dependancies) == 2 grouped_dependancies = tl.merge_event_dependencies(event_dependancies) assert len(grouped_dependancies) == 2 assert event_a_pk in grouped_dependancies assert event_b_pk in grouped_dependancies[event_a_pk] assert event_b_pk in grouped_dependancies assert event_a_pk in grouped_dependancies[event_b_pk] def test_find_event_dependencies_03(self): base_mask = self.tl.base_mask tl = self.tl event_handler = Event_Handler() event_lst = list() event_mask = base_mask.copy() event_mask[0] = 1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 00:00:00"), time_end=date_parse("2015-02-04 00:00:00"), ) event_a_pk = event_dct["pk"] event_lst.append(event_dct) # disjoin events in time VVV ^^^ event_mask = base_mask.copy() event_mask[0] = 1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-05 00:00:00"), time_end=date_parse("2015-02-06 00:00:00"), ) event_b_pk = event_dct["pk"] event_lst.append(event_dct) # joining event, but larger mask VVV event_mask = base_mask.copy() event_mask[0:2] = 1 event_dct = event_handler.get_event( event_type_name="event", bitmask=event_mask, time_start=date_parse("2015-02-03 12:00:00"), time_end=date_parse("2015-02-05 12:00:00"), ) event_c_pk = event_dct["pk"] event_lst.append(event_dct) dependency_functions = list() dependency_functions.append(Dependency_Funcs.dep_time) dependency_functions.append(Dependency_Funcs.dep_space_all) # we have time_start, time_end, bitmask, and event_type_name event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions) assert len(event_dependancies) == 0 dependency_functions = list() dependency_functions.append(Dependency_Funcs.dep_time) event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions) superprint(pformat(event_dependancies)) assert len(event_dependancies) == 4 tl.generate_dependency_graph( event_handler.nodes, event_dependancies, filename="test_find_event_dependencies_01", ) grouped_dependancies = tl.merge_event_dependencies(event_dependancies) assert len(grouped_dependancies) == 3 superprint(pformat(grouped_dependancies)) assert event_a_pk in grouped_dependancies assert event_b_pk in grouped_dependancies assert event_c_pk in grouped_dependancies def test_reduce_holes_00(): """ordered timeline all ts butted up against each other""" timeline_holes = list() timeline_holes.append((1, 2, np.array([1, 0, 1, 1]))) timeline_holes.append((2, 3, np.array([1, 0, 1, 1]))) timeline_holes.append((3, 4, np.array([1, 0, 0, 1]))) timeline_holes.append((4, 5, np.array([1, 1, 1, 1]))) timeline_holes.append((5, 6, np.array([1, 1, 1, 1]))) timeline_holes.append((6, 7, np.array([1, 1, 1, 1]))) correct_holes = list() correct_holes.append((1, 3, np.array([1, 0, 1, 1]))) correct_holes.append((3, 4, np.array([1, 0, 0, 1]))) correct_holes.append((4, 7, np.array([1, 1, 1, 1]))) reductions, timeline_holes = reduce_holes(timeline_holes) superprint("\n", pformat(timeline_holes)) for idx, hole in enumerate(timeline_holes): ts, te, mask = hole cts, cte, cmask = correct_holes[idx] assert ts == cts assert te == cte npt.assert_equal(mask, cmask) assert reductions == 3 def test_reduce_holes_01(): """ordered timeline all ts butted up against each other""" timeline_holes = list() timeline_holes.append((0, 1, np.array([1, 1, 1, 1]))) timeline_holes.append((1, 2, np.array([1, 0, 1, 1]))) timeline_holes.append((2, 3, np.array([1, 0, 1, 1]))) timeline_holes.append((3, 4, np.array([1, 0, 0, 1]))) timeline_holes.append((4, 5, np.array([1, 1, 1, 1]))) timeline_holes.append((5, 6, np.array([1, 1, 1, 1]))) timeline_holes.append((6, 7, np.array([1, 1, 1, 1]))) correct_holes = list() correct_holes.append((0, 1, np.array([1, 1, 1, 1]))) correct_holes.append((1, 3, np.array([1, 0, 1, 1]))) correct_holes.append((3, 4, np.array([1, 0, 0, 1]))) correct_holes.append((4, 7, np.array([1, 1, 1, 1]))) reductions, timeline_holes = reduce_holes(timeline_holes) superprint("\n", pformat(timeline_holes)) for idx, hole in enumerate(timeline_holes): ts, te, mask = hole cts, cte, cmask = correct_holes[idx] assert ts == cts assert te == cte npt.assert_equal(mask, cmask) assert reductions == 3 def test_reduce_holes_02(): """ordered timeline all ts separated a bit""" timeline_holes = list() timeline_holes.append((0, 1, np.array([1, 1, 1, 1]))) timeline_holes.append((1, 2, np.array([1, 0, 1, 1]))) timeline_holes.append((3, 4, np.array([1, 0, 0, 1]))) timeline_holes.append((4, 5, np.array([1, 1, 1, 1]))) timeline_holes.append((6, 7, np.array([1, 1, 1, 1]))) correct_holes = list() correct_holes.append((0, 1, np.array([1, 1, 1, 1]))) correct_holes.append((1, 2, np.array([1, 0, 1, 1]))) correct_holes.append((3, 4, np.array([1, 0, 0, 1]))) correct_holes.append((4, 5, np.array([1, 1, 1, 1]))) correct_holes.append((6, 7, np.array([1, 1, 1, 1]))) reductions, timeline_holes = reduce_holes(timeline_holes) superprint("\n", pformat(timeline_holes)) for idx, hole in enumerate(timeline_holes): ts, te, mask = hole cts, cte, cmask = correct_holes[idx] assert ts == cts assert te == cte npt.assert_equal(mask, cmask) assert reductions == 0 def test_reduce_holes_03(): """ordered timeline all ts separated a bit""" timeline_holes = list() timeline_holes.append((0, 1, np.array([1, 1, 1, 1]))) timeline_holes.append((1, 2, np.array([1, 0, 1, 1]))) timeline_holes.append((3, 4, np.array([1, 0, 0, 1]))) timeline_holes.append((4, 6, np.array([1, 1, 1, 1]))) timeline_holes.append((6, 7, np.array([1, 1, 1, 1]))) correct_holes = list() correct_holes.append((0, 1, np.array([1, 1, 1, 1]))) correct_holes.append((1, 2, np.array([1, 0, 1, 1]))) correct_holes.append((3, 4, np.array([1, 0, 0, 1]))) correct_holes.append((4, 7, np.array([1, 1, 1, 1]))) reductions, timeline_holes = reduce_holes(timeline_holes) superprint("\n", pformat(timeline_holes)) for idx, hole in enumerate(timeline_holes): ts, te, mask = hole cts, cte, cmask = correct_holes[idx] assert ts == cts assert te == cte npt.assert_equal(mask, cmask) assert reductions == 1 def test_tlevent_00(): event: TLEvent = dict( pk="1", event_type_name="fish", bitmask=eb.zeros(10), time_start=date_parse("2020-01-01"), time_end=date_parse("2020-01-02"), ) superprint(type(event), event) assert type(event) == dict def test_tlevent_01(): event = TLEvent( pk="1", event_type_name="fish", bitmask=eb.zeros(10), time_start=date_parse("2020-01-01"), time_end=date_parse("2020-01-02"), ) superprint(type(event), event) def test_tlevent_02(): event = TLEvent( pk="1", event_type_name="fish", bitmask=eb.zeros(10), time_start=pd.Timestamp(date_parse("2020-01-01")), time_end=pd.Timestamp(date_parse("2020-01-02")), ) superprint(type(event), event) def test_tlpit_00(): pit = TLPointInTime( pk="1", name="2", category="aaaa", bitmask=eb.zeros(10), ts=date_parse("2020-01-01"), direction=Event_Direction.POSITIVE, ) superprint(pit) def test_tlpit_01(): pit = TLPointInTime( pk="1", name="2", category="aaaa", bitmask=eb.zeros(10), ts=date_parse("2020-01-01"), direction=Event_Direction.POSITIVE, ) superprint(pit) def test_tlpit_02(): # noinspection PyTypeChecker pit: TLPointInTime = dict( pk="1", name="2", category="aaaa", bitmask=eb.zeros(10), ts=date_parse("2020-01-01"), direction=str(Event_Direction.POSITIVE), # type: ignore ) superprint(pit) def test_get_mask_sum_00(): bask_mask = eb.zeros(8) pit = Point_in_Time(bask_mask) bitmasks = [ eb.array([0, 0, 0, 1, 1, 0, 0, 0]), eb.array([0, 0, 0, 1, 1, 0, 1, 0]), eb.array([0, 1, 1, 1, 1, 0, 0, 0]), eb.array([1, 0, 0, 1, 1, 0, 0, 0]), ] for idx, bitmask in enumerate(bitmasks): dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.POSITIVE, ) pit.positive_add(dct) value = pit.get_mask_sum() npt.assert_array_equal(value, eb.array([1, 1, 1, 4, 4, 0, 1, 0])) def test_get_mask_sum_01(): bask_mask = eb.zeros(8) pit = Point_in_Time(bask_mask) bitmasks = [ eb.array([0, 0, 0, 1, 1, 0, 0, 0]), eb.array([0, 0, 0, 1, 1, 0, 1, 0]), eb.array([0, 1, 1, 1, 1, 0, 0, 0]), eb.array([1, 0, 0, 1, 1, 0, 0, 0]), ] for idx, bitmask in enumerate(bitmasks): dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.POSITIVE, ) pit.positive_add(dct) value = pit.get_mask_sum() npt.assert_array_equal(value, eb.array([1, 1, 1, 4, 4, 0, 1, 0])) bitmasks = [ eb.array([0, 0, 1, 1, 0, 0, 0, 0]), ] for idx, bitmask in enumerate(bitmasks): dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.NEGATIVE, ) pit.negative_add(dct) value = pit.get_mask_sum() npt.assert_array_equal(value, eb.array([1, 1, 0, 3, 4, 0, 1, 0])) def test_get_mask_sum_02(): bask_mask = eb.zeros(8) pit = Point_in_Time(bask_mask) bitmasks = [ eb.array([0, 0, 0, 1, 1, 0, 0, 0]), eb.array([0, 0, 0, 1, 1, 0, 1, 0]), eb.array([0, 1, 1, 1, 1, 0, 0, 0]), eb.array([1, 0, 0, 1, 1, 0, 0, 0]), ] for idx, bitmask in enumerate(bitmasks): dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.POSITIVE, ) pit.positive_add(dct) value = pit.get_mask_sum() npt.assert_array_equal(value, eb.array([1, 1, 1, 4, 4, 0, 1, 0])) bitmasks = [ eb.array([0, 0, 1, 1, 0, 0, 0, 0]), eb.array([0, 0, 0, 0, 0, 0, 1, 0]), ] for idx, bitmask in enumerate(bitmasks): dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.NEGATIVE, ) pit.negative_add(dct) value = pit.get_mask_sum() npt.assert_array_equal(value, eb.array([1, 1, 0, 3, 4, 0, 0, 0])) def test_get_mask_sum_03(): bask_mask = eb.zeros(8) pit = Point_in_Time(bask_mask) bitmasks = [ eb.array([0, 0, 1, 1, 0, 0, 0, 0]), eb.array([0, 0, 0, 0, 0, 0, 1, 0]), ] for idx, bitmask in enumerate(bitmasks): dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.NEGATIVE, ) pit.negative_add(dct) value = pit.get_mask_sum() ecorr = eb.array([0, 0, -1, -1, 0, 0, -1, 0]) npt.assert_array_equal(value, ecorr) def test_get_mask_sum_03b(): # underflow bask_mask = eb.zeros(8) pit = Point_in_Time(bask_mask) for idx in range(BASE_DTYPE_MAX * 2): # negative needs two more, 127 to -128 bitmask = eb.array([0, 0, -1, -1, 0, 0, 0, 0]) dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.NEGATIVE, ) pit.negative_add(dct) with pytest.raises(Underflow): value = pit.get_mask_sum() def test_get_mask_sum_03c(): # underflow bask_mask = eb.zeros(8) pit = Point_in_Time(bask_mask) for idx in range(BASE_DTYPE_MAX * 2): # negative needs two more, 127 to -128 bitmask = eb.array([0, 0, 1, 1, 0, 0, 0, 0]) dct: TLPointInTime = TLPointInTime( pk=str(idx), name=str(idx), category="a", bitmask=bitmask, ts=date_parse("2020-01-01"), direction=Event_Direction.NEGATIVE, ) pit.negative_add(dct) with pytest.raises(Overflow): value = pit.get_mask_sum() @pytest.mark.skipif(dask is None, reason="could not import dask") def test_the_gauntlet(): # requires dask, dask[distributed] machine_name = "test_machine" dtype = "U2" empty_value = " " test_value = ".." bit_total = 4000 # 100000 bitmask_class = LiteBitmask time_seconds = 3600 # 86400 range_start = datetime.datetime.strptime("2024-01-01", FORMAT_DATE_DAY) range_end = range_start + datetime.timedelta(seconds=time_seconds) eg = EventGeneration( time_seconds, bit_total, dtype=dtype, empty_value=empty_value, test_value=test_value, visualize=False, bitmask_class=bitmask_class, seed=42, ) characters = [] characters.extend(list(range(97, 122 + 1))) characters.extend(list(range(65, 90 + 1))) characters.extend(list(range(48, 57 + 1))) characters = list(map(chr, characters)) event_names = eg.generate_names_n_level(characters, 3) events = eg.generate_non_overlapping_scattered_events_v0(event_names) event_lst = events.event_lst correct_unit_seconds = time_seconds * bit_total correct_possible_unit_seconds = (range_end - range_start).total_seconds() * bit_total import dask.dataframe as dd pdf = pd.DataFrame(event_lst) ddf = dd.from_pandas(pdf, npartitions=8) ddf = ddf.drop(['x', 'y'], axis=1) ddf['bitmask'] = ddf['bitmask'].apply(lambda b: b.to_dict(), meta=('bitmask', 'object')) ddf['time_start'] = ddf['ts'].apply(lambda tsi: pd.to_datetime(range_start + datetime.timedelta(seconds=tsi, microseconds=int(random.uniform(0, 1) * 1000000)), utc=False), meta=('ts', "object")) ddf['time_end'] = ddf['te'].apply(lambda tsi: pd.to_datetime(range_start + datetime.timedelta(seconds=tsi, microseconds=int(random.uniform(0, 1) * 1000000)), utc=False), meta=('te', 'object')) ddf['pk'] = ddf['name'] ddf['event_type_name'] = 'job' pdf2 = ddf.compute() event_lst = df_to_lstofdct(pdf2) for event_dct in event_lst: event_dct['bitmask'] = LiteBitmask.from_dict(event_dct['bitmask']) # base_mask = bitmask_class.zeros(bit_total) # tl = Timeline(machine_name, range_start, range_end, base_mask) # possible_unit_seconds = tl.possible_unit_seconds # with cProfile.Profile() as pr: # timeline_lst = tl.prepare_event_timeline(event_lst) # timeline_dct = tl.group_timeline(timeline_lst) # timeline_sorted = tl.sort_timeline(timeline_dct) # mask_timeline = tl.normalize_timeline_pit(timeline_sorted) # mask_timeline = tl.sum_timeline(mask_timeline, test_negative=False) # # tl.print_timeline(mask_timeline, binary=True) # mask_timeline = tl.flatten_timeline(mask_timeline) # mask_timeline = tl.isolate_timeline_range(mask_timeline) # # tl.print_timeline(mask_timeline) # mag_timeline = tl.mask_timeline_to_mag_timeline(mask_timeline) # consumed_unit_seconds = tl.calculate_area(mag_timeline) # assert round(abs(consumed_unit_seconds - correct_unit_seconds), 4) == 0 # assert possible_unit_seconds == correct_possible_unit_seconds # profile_result = pstats.Stats(pr) # profile_result.sort_stats(SortKey.CUMULATIVE).print_stats(4) # print(f"{len(event_lst)=} {len(timeline_lst)=}") base_mask = bitmask_class.zeros(bit_total) tl = TimelineParallel(machine_name, range_start, range_end, base_mask, processes=16) possible_unit_seconds = tl.possible_unit_seconds with cProfile.Profile() as pr: tl.load(event_lst) tl.run() consumed_unit_seconds = tl.calculate_area() # assert round(abs(consumed_unit_seconds - correct_unit_seconds), 4) == 0 # assert possible_unit_seconds == correct_possible_unit_seconds profile_result = pstats.Stats(pr) profile_result.sort_stats(SortKey.CUMULATIVE).print_stats(16) # print(f"{len(event_lst)=} {len(timeline_lst)=}") import ipdb; ipdb.set_trace() from dask.distributed import Client, Queue client = Client() spark: DataFrame = SparkSession.builder.appName("test_the_gauntlet").getOrCreate() spark.conf.set("spark.sql.session.timeZone", "UTC") schema = StructType( [ StructField("name", StringType(), False), StructField("ts", TimestampType(), False), # aurora_crayex_alerts, obtain from query StructField("te", TimestampType(), False), # goes back to level1 -> table schema_bitmask, ]) sdf = spark.createDataFrame(pdf2, schema=schema) # if you don't provide a schema, the intervals in the bitmask won't cast right. sdf.show(32, truncate=False) pandas_partitions = Queue() def convert_to_pandas(iterator): for partition in iterator: print(partition) yield pd.DataFrame(list(partition)) print(f"{sdf.rdd.getNumPartitions()=}") pdf3 = sdf.rdd.mapPartitions(convert_to_pandas).collect() def spark_to_multi_df(df: pd.DataFrame, address): with Client(address) as client: [future] = client.scatter([df]) pandas_partitions.put(future)