From 8c5251de0c33e9463c04cb2fe90df6aa007ae48e Mon Sep 17 00:00:00 2001 From: philippe piot <ppiot@anl.gov> Date: Wed, 31 Jul 2024 23:33:10 -0500 Subject: [PATCH] update diagnstics for numpy 2.0 --- AWAControl/diagnostics/screen.py | 24 +++++++++---------- .../diagnostics/utils/circle_detection.py | 4 ++-- .../diagnostics/utils/fitting_methods.py | 2 +- 3 files changed, 15 insertions(+), 15 deletions(-) diff --git a/AWAControl/diagnostics/screen.py b/AWAControl/diagnostics/screen.py index 88e5f31..0a9e6a1 100644 --- a/AWAControl/diagnostics/screen.py +++ b/AWAControl/diagnostics/screen.py @@ -340,11 +340,11 @@ class AWAImageDiagnostic(BaseModel): print(f"log10 image intensity {log10_total_intensity} below threshold") result = { - "Cx": np.NaN, - "Cy": np.NaN, - "Sx": np.NaN, - "Sy": np.NaN, - "bb_penalty": np.NaN, + "Cx": np.nan, + "Cy": np.nan, + "Sx": np.nan, + "Sy": np.nan, + "bb_penalty": np.nan, "total_intensity": 10**log10_total_intensity, "log10_total_intensity": log10_total_intensity, } @@ -416,15 +416,15 @@ class AWAImageDiagnostic(BaseModel): # bounding box constraint is active if bb_penalty > 0 and self.apply_bounding_box_constraint: for name in ["Cx", "Cy", "Sx", "Sy"]: - result[name] = np.NaN + result[name] = np.nan else: result = { - "Cx": np.NaN, - "Cy": np.NaN, - "Sx": np.NaN, - "Sy": np.NaN, - "bb_penalty": np.NaN, + "Cx": np.nan, + "Cy": np.nan, + "Sx": np.nan, + "Sy": np.nan, + "bb_penalty": np.nan, "total_intensity": fits["total_intensity"], "log10_total_intensity": log10_total_intensity, } @@ -566,7 +566,7 @@ class AWAFrameGrabberDiagnostic(AWAImageDiagnostic): } else: # get pvs - results = caget_many(self.pv_names) + results = caget_many(self.pv_names, timeout=5.0) e_pvs = copy(self.extra_pvs) if self.target_charge_pv is not None: e_pvs += [self.target_charge_pv] diff --git a/AWAControl/diagnostics/utils/circle_detection.py b/AWAControl/diagnostics/utils/circle_detection.py index 9bafa53..ae66754 100644 --- a/AWAControl/diagnostics/utils/circle_detection.py +++ b/AWAControl/diagnostics/utils/circle_detection.py @@ -30,7 +30,7 @@ class ScreenFinder: return self.points.append((event.xdata, event.ydata)) - self.line.set_data(*np.asfarray(self.points).T) + self.line.set_data(*np.array(self.points).T) # draw a circle if the number of points is enough if len(self.points) > 3: @@ -74,7 +74,7 @@ class ScreenFinder: def fit_circle(self, points): # https://scipy-cookbook.readthedocs.io/items/Least_Squares_Circle.html - npts = np.asfarray(points).T + npts = np.array(points).T x = npts[0] y = npts[1] x_m = np.mean(x) diff --git a/AWAControl/diagnostics/utils/fitting_methods.py b/AWAControl/diagnostics/utils/fitting_methods.py index 6c62510..04f88bd 100644 --- a/AWAControl/diagnostics/utils/fitting_methods.py +++ b/AWAControl/diagnostics/utils/fitting_methods.py @@ -157,7 +157,7 @@ def fit_gaussian_linear_background(y, inital_guess=None, visualize=True, n_resta fig, ax = plot_fit(x, normed_y, bad_candidate) ax.set_title("bad fit") - candidate = [np.NaN] * 4 + candidate = [np.nan] * 4 return candidate -- GitLab