diff --git a/scoop-based_V2/astra_example/input.ref.in b/scoop-based_V2/astra_example/input.ref.in index 091243fe80f870db2859072c192eb69e417136d1..01ea40eef49ebee3f1e3ccd2719e843a72927f06 100644 --- a/scoop-based_V2/astra_example/input.ref.in +++ b/scoop-based_V2/astra_example/input.ref.in @@ -33,7 +33,7 @@ Lsub_cor=T XYrms = {{lsr_xyrms}} Trms = {{lsr_trms}} - Qbunch=10 + Qbunch=1 / &OUTPUT diff --git a/scoop-based_V2/astra_example/optimize.py b/scoop-based_V2/astra_example/optimize.py index 2f3cae6ef6dd5063ced67793be9571d0bd6c5993..68f3b19ed92333ffdbc2da9c75b3c2115537f172 100755 --- a/scoop-based_V2/astra_example/optimize.py +++ b/scoop-based_V2/astra_example/optimize.py @@ -1,7 +1,7 @@ import os import numpy as np -import opt_func as optH +import optHelper as optH #import generatorTool as gt from shutil import copyfile, rmtree from scipy.stats import powerlaw, skew @@ -29,11 +29,11 @@ final_z = '2424' run = 1 Np = 10000 # Ranges of the parameters -myRanges = [(0.05, 0.32), +myRanges = [(0.05, 4.0), (0.225e-3, 10e-3), (90, 120), (-15, 15), - (10.0, 16.0), + (10.0, 20.0), ( -20.0, 20.0), (10.0, 16.0), (0.05, 0.32)] @@ -159,7 +159,7 @@ def fitnessFunc(X): os.chdir(abs_path) # to be modified for each optimization # Constraints and filters, e.g. particle loss. Unfinshed. - if Nalive < Np - 10 or kinetic < 120: + if Nalive < Np - 10 or kinetic < 100: return [tuple(np.divide(badFitness, fScale)), (np.nan,)] # minimum emit along the beamline index=np.argwhere(zdist > dump)