Newer
Older
/*
* Copyright (C) 2024, UChicago Argonne, LLC
* Licensed under the 3-clause BSD license. See accompanying LICENSE.txt file
* in the top-level directory.
*/
package Octeres

Eric Pershey
committed
import Octeres.DataUDF.{LiteBitmaskSchema, logical_or}
import org.apache.spark.sql.catalyst.expressions.GenericRowWithSchema
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.{Encoders, Row, SparkSession}
import org.scalatest.funsuite.AnyFunSuite

Eric Pershey
committed
object ExampleUDF {
// very simple UDF function as an example.
case class SimpleAddStruct(a: Int, b: Int)
val SimpleAddSchema: StructType = Encoders.product[SimpleAddStruct].schema
def simpleAdd(a: Int, b: Int): Int = a + b
}
class DataUDFTest extends AnyFunSuite {

Eric Pershey
committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
test("test_add") {
val result = ExampleUDF.simpleAdd(1, 2)
assert(result == 3)
}
test("test_simple") {
val sparkSession = SparkSession.builder().appName("DataUDFTest").master("local").getOrCreate()
import sparkSession.implicits._
val deck = Seq(
Row(1, 2),
)
var df = sparkSession.createDataFrame(sparkSession.sparkContext.parallelize(deck), schema = ExampleUDF.SimpleAddSchema)
sparkSession.udf.register("SimpleAdd", ExampleUDF.simpleAdd(_: Int, _: Int), IntegerType)
df = df.withColumn("c", expr("SimpleAdd(a, b)"))
df.show()
}
test("test_logical_or_00") {
println("test_logical_or_00")
val bitmask_length = 8
val a_bitmask = new GenericRowWithSchema(Array(bitmask_length, 3, List(List(0, 2)), 0, 2), LiteBitmaskSchema)
val b_bitmask = new GenericRowWithSchema(Array(bitmask_length, 3, List(List(1, 3)), 1, 3), LiteBitmaskSchema)
println(s"a_bitmask=${a_bitmask}")
println(s"b_bitmask=${b_bitmask}")
println(DataUDF.logical_or(a_bitmask, b_bitmask))
println(DataUDF.logical_or(null, b_bitmask))
println(DataUDF.logical_or(a_bitmask, null))
}
test("test_logical_or_01") {
println("test_logical_or_01")
val bitmask_length = 8
val a_bitmask = new GenericRowWithSchema(Array(bitmask_length, 3, List(List(0, 2)), 0, 2), LiteBitmaskSchema)
val b_bitmask = new GenericRowWithSchema(Array(bitmask_length, 0, List(), -1, -1), LiteBitmaskSchema)
println(s"a_bitmask=${a_bitmask}")
println(s"b_bitmask=${b_bitmask}")
println(DataUDF.logical_or(a_bitmask, b_bitmask))
println(DataUDF.logical_or(null, b_bitmask))
println(DataUDF.logical_or(a_bitmask, null))
println(DataUDF.logical_or(null, null))
println(DataUDF.logical_or(a_bitmask, a_bitmask))
println(DataUDF.logical_or(b_bitmask, b_bitmask))
}
test("test_bitmask") {
println("test_bitmask")
val bitmask_length = 8
// val a_bitmask = new GenericRowWithSchema(Array(bitmask_length, 3, Array(Array(0, 2)), 0, 2), LiteBitmaskSchema)
// val b_bitmask = new GenericRowWithSchema(Array(bitmask_length, 3, Array(Array(1, 3)), 1, 3), LiteBitmaskSchema)
val a_bitmask = new GenericRowWithSchema(Array(bitmask_length, 3, List(List(0, 2)), 0, 2), LiteBitmaskSchema)
val b_bitmask = new GenericRowWithSchema(Array(bitmask_length, 3, List(List(1, 3)), 1, 3), LiteBitmaskSchema)
val c_bitmask = new GenericRowWithSchema(Array(bitmask_length, 5, List(List(0, 4)), 0, 4), LiteBitmaskSchema)
val d_bitmask = new GenericRowWithSchema(Array(bitmask_length, 0, List(), -1, -1), LiteBitmaskSchema)
val e_bitmask = new GenericRowWithSchema(Array(bitmask_length, 6, List(List(0, 5)), 0, 5), LiteBitmaskSchema)
val schema = StructType(List(
StructField("a", IntegerType, nullable = true),
StructField("b", IntegerType, nullable = true),
StructField("bitmask", LiteBitmaskSchema, nullable = true)
))
val deck = Seq(
Row(0, 1, null),
Row(1, 2, a_bitmask),
Row(2, 4, b_bitmask),
Row(3, 8, c_bitmask),
Row(4, 16, d_bitmask),
Row(5, 32, e_bitmask),
)
val sparkSession = SparkSession.builder().appName("DataUDFTest").master("local").getOrCreate()
var df = sparkSession.createDataFrame(sparkSession.sparkContext.parallelize(deck), schema = schema)
DataUDF.registerAll(sparkSession)
df.createOrReplaceTempView("temp_view_a")
df.createOrReplaceTempView("temp_view_b")
df.show(32, truncate=false)
sparkSession.sql("select bitmask.intervals from temp_view_a").show(32, truncate=false)
var df2 = sparkSession.sql("Select * from temp_view_a")
// https://spark.apache.org/docs/latest/sql-ref-datatypes.html
df2.show(32, truncate=false)
df2 = df2.withColumn("r_bitmask", expr("logical_or(bitmask, bitmask)"))
df2.show(32, truncate=false)
var df3 = sparkSession.sql("select tva.a, tva.b, " +
"tva.bitmask as a_bitmask, " +
"tvb.bitmask as b_bitmask, " +
"logical_or(tva.bitmask, tvb.bitmask) as c_bitmask " +
// "intersection_any(tva.bitmask, tvb.bitmask) " +
"from temp_view_a tva join temp_view_b tvb"
)
df3.show(32, truncate=false)
df3.printSchema()
}