Skip to content
Snippets Groups Projects
test_timeline.py 31.6 KiB
Newer Older
# Copyright (C) 2024, UChicago Argonne, LLC
# Licensed under the 3-clause BSD license.  See accompanying LICENSE.txt file
# in the top-level directory.

"""
Unit tests for timeline.
"""
import cProfile
import datetime
import pstats
from _decimal import Underflow, Overflow
from pprint import pformat
import random
from pstats import SortKey
from typing import List

import numpy as np
import numpy.testing as npt
import pandas as pd
from dateutil.parser import parse as date_parse
from pyspark.sql import SparkSession, DataFrame
import pyspark.sql.functions as F
from pyspark.sql.types import StructType, StructField, TimestampType, StringType
from Ocean.schema_lookup import schema_bitmask
from Octeres.bitmask import BASE_DTYPE_MAX
from Octeres.bitmask import eb
from Octeres.bitmask.bitmask_lite import LiteBitmask, LiteBitmaskSlots
from Octeres.data_generation import EventGeneration
from Octeres.forthwith import FORMAT_DATE_DAY
from Octeres.timeline import Dependency_Funcs, TLCollisionOverlap, TimelinePit, TimelineParallel
from Octeres.timeline import Event_Handler
from Octeres.timeline import (
    Timeline,
    sum_array,
    TLEvent,
    TLPointInTime,
    Event_Direction,
)
from Octeres.timeline import TimelineDict, TimelineMask
from Octeres.timeline import reduce_holes, Point_in_Time
from Octeres.util import superprint, df_to_lstofdct
import pytest

try:
    import dask
except ImportError:
    dask = None

pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", 512)
pd.set_option("display.max_colwidth", None)
pd.set_option("display.float_format", "{:.6f}".format)


class Test_Timeline:
    @classmethod
    def setup_class(cls):
        machine_name = "test"
        range_start = date_parse("2015-01-01")
        range_end = date_parse("2015-02-15")
        base_mask = eb.zeros(8)
        cls.tl = Timeline(machine_name, range_start, range_end, base_mask)

    def test_possible_unit_seconds(self):
        tl = self.tl
        possible_unit_seconds = tl.possible_unit_seconds
        correct_unit_seconds = (tl.range_end - tl.range_start).total_seconds() * len(tl.base_mask)
        assert possible_unit_seconds == correct_unit_seconds

    #     def test_prepare_event_timeline_00(self):
    #         #TODO
    #         pass
    #
    #     def test_group_timeline_00(self):
    #         #TODO
    #         pass
    #
    #     def test_normalize_timeline_00(self):
    #         #TODO
    #         pass
    #
    #     def test_mask_timeline_to_mag_timeline_00(self):
    #         #TODO
    #         pass
    #

    def test_search_timeline_for_holes_00(self):
        mask_timeline = TimelineMask()
        mask_timeline.append((date_parse("2017-01-01"), eb.ones(8)))
        mask_timeline.append((date_parse("2017-01-02"), eb.ones(8)))
        mask_timeline.append((date_parse("2017-01-03"), eb.array([1, 0, 1, 1, 1, 1, 1, 1])))
        mask_timeline.append((date_parse("2017-01-04"), eb.ones(8)))

        holes = self.tl.search_timeline_for_holes(mask_timeline)

        assert len(holes) == 1
        correct_ts = date_parse("2017-01-03")
        correct_te = date_parse("2017-01-04")
        correct_delta = eb.array([0, 1, 0, 0, 0, 0, 0, 0])
        hole_ts = holes[0][0]
        hole_te = holes[0][1]
        hole_delta = holes[0][2]
        superprint(correct_delta)
        superprint(hole_delta)
        assert correct_ts == hole_ts
        assert correct_te == hole_te
        assert (correct_delta == hole_delta).all()

    def test_search_timeline_for_holes_01(self):
        mask_timeline = TimelineMask()
        mask_timeline.append((date_parse("2017-01-01"), eb.array([1, 0, 1, 1, 1, 1, 1, 1])))
        mask_timeline.append((date_parse("2017-01-02"), eb.array([1, 0, 1, 1, 1, 1, 1, 1])))
        mask_timeline.append((date_parse("2017-01-03"), eb.array([1, 0, 1, 1, 1, 1, 1, 1])))
        mask_timeline.append((date_parse("2017-01-04"), eb.array([1, 0, 1, 1, 1, 1, 1, 1])))
        mask_timeline.append((date_parse("2017-01-05"), eb.array([1, 0, 1, 1, 1, 1, 1, 1])))
        mask_timeline.append((date_parse("2017-01-06"), eb.array([1, 0, 1, 1, 1, 1, 1, 1])))

        holes = self.tl.search_timeline_for_holes(mask_timeline)

        assert len(holes) == 1
        correct_delta = eb.array([0, 1, 0, 0, 0, 0, 0, 0])
        ts, te, hole_delta = holes[0]
        assert ts == date_parse("2017-01-01")
        assert te == date_parse("2017-01-06")
        assert (correct_delta == hole_delta).all()

    #     def test_calculate_area_00(self):
    #         #TODO
    #         pass
    def test_collision_detection_00(self):
        base_mask = self.tl.base_mask
        tl = self.tl

        event_lst = list()
        event_mask = base_mask.copy()
        event_mask[0:3] = 1
        dct = dict(
            pk="an_event",
            event_type_name="job",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 00:00:00"),
            time_end=date_parse("2015-02-04 00:00:00"),
        )
        event_lst.append(dct)
        event_mask = base_mask.copy()
        event_mask[1] = 1
        dct = dict(
            pk="an_event2",
            event_type_name="job",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 01:00:00"),
            time_end=date_parse("2015-02-03 02:00:00"),
        )
        event_lst.append(dct)
        timeline_lst = tl.prepare_event_timeline(event_lst)

        timeline_dct = tl.group_timeline(timeline_lst)
        timeline_sorted = tl.sort_timeline(timeline_dct)
        collisions = tl.find_collisions_timeline(timeline_sorted)
        for collision in collisions:
            superprint(collision)
        assert len(collisions) == 1

    def test_collision_detection_01(self):
        # https://pandas.pydata.org/pandas-docs/version/0.21.1/generated/pandas.Timestamp.to_datetime.html
        base_mask = self.tl.base_mask
        tl = self.tl

        event_lst = list()
        event_mask = base_mask.copy()
        event_mask[0:3] = 1
        dct: TLEvent = dict(
            pk="an_event",
            event_type_name="job",
            bitmask=event_mask,
            time_start=pd.Timestamp(date_parse("2015-02-03 00:00:00")),
            time_end=pd.Timestamp(date_parse("2015-02-04 00:00:00")),
        )
        event_lst.append(dct)
        event_mask = base_mask.copy()
        event_mask[1] = 1
        dct: TLEvent = dict(
            pk="an_event2",
            event_type_name="job",
            bitmask=event_mask,
            time_start=pd.Timestamp(date_parse("2015-02-03 01:00:00")),
            time_end=pd.Timestamp(date_parse("2015-02-03 02:00:00")),
        )
        event_lst.append(dct)
        timeline_lst: List[TLPointInTime] = tl.prepare_event_timeline(event_lst)

        timeline_dct: TimelineDict = tl.group_timeline(timeline_lst)
        timeline_sorted: TimelinePit = tl.sort_timeline(timeline_dct)
        tl.print_timeline(timeline_sorted)
        collisions: List[TLCollisionOverlap] = tl.find_collisions_timeline(timeline_sorted)
        for collision in collisions:
            superprint(collision)
        assert len(collisions) == 1

    def test_full_stack(self):
        base_mask = self.tl.base_mask
        tl = self.tl

        possible_unit_seconds = tl.possible_unit_seconds
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
        event_handler = Event_Handler()

        event_lst = list()
        event_mask = base_mask.copy()
        event_mask[0:3] = 1
        event_dct = event_handler.get_event(
            event_type_name="job",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03"),
            time_end=date_parse("2015-02-04"),
        )
        event_lst.append(event_dct)
        correct_unit_seconds = (event_dct["time_end"] - event_dct["time_start"]).total_seconds() * sum_array(event_mask)
        correct_possible_unit_seconds = (tl.range_end - tl.range_start).total_seconds() * len(tl.base_mask)

        timeline_lst = tl.prepare_event_timeline(event_lst)

        timeline_dct = tl.group_timeline(timeline_lst)
        timeline_sorted = tl.sort_timeline(timeline_dct)

        # mask_timeline = tl.normalize_timeline(timeline_sorted, test_negative=True)
        mask_timeline = tl.normalize_timeline_pit(timeline_sorted)
        mask_timeline = tl.sum_timeline(mask_timeline, test_negative=False)
        tl.print_timeline(mask_timeline, binary=True)
        mask_timeline = tl.flatten_timeline(mask_timeline)

        mask_timeline = tl.isolate_timeline_range(mask_timeline)

        # tl.print_timeline(mask_timeline)
        mag_timeline = tl.mask_timeline_to_mag_timeline(mask_timeline)

        consumed_unit_seconds = tl.calculate_area(mag_timeline)

        # return consumed_unit_seconds, possible_unit_seconds, mag_timeline
        assert round(abs(consumed_unit_seconds - correct_unit_seconds), 4) == 0
        assert possible_unit_seconds == correct_possible_unit_seconds

    def test_find_event_dependencies_00(self):
        base_mask = self.tl.base_mask
        tl = self.tl
        event_handler = Event_Handler()
        event_lst = list()
        event_mask = base_mask.copy()
        event_mask[0] = 1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 00:00:00"),
            time_end=date_parse("2015-02-04 00:00:00"),
        )
        event_a_pk = event_dct["pk"]
        event_lst.append(event_dct)
        # joint events in time VVV ^^^
        event_mask = base_mask.copy()
        event_mask[0] = 1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 12:00:00"),
            time_end=date_parse("2015-02-05 00:00:00"),
        )
        event_b_pk = event_dct["pk"]
        event_lst.append(event_dct)
        dependency_functions = list()
        dependency_functions.append(Dependency_Funcs.dep_time)
        dependency_functions.append(Dependency_Funcs.dep_space_all)
        event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions)
        assert len(event_dependancies) == 2
        grouped_dependancies = tl.merge_event_dependencies(event_dependancies)
        assert len(grouped_dependancies) == 2
        assert event_a_pk in grouped_dependancies
        assert event_b_pk in grouped_dependancies[event_a_pk]
        assert event_b_pk in grouped_dependancies
        assert event_a_pk in grouped_dependancies[event_b_pk]

    def test_find_event_dependencies_01(self):
        base_mask = self.tl.base_mask
        tl = self.tl
        event_handler = Event_Handler()
        event_lst = list()
        event_mask = base_mask.copy()
        event_mask[0] = 2
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 00:00:00"),
            time_end=date_parse("2015-02-04 00:00:00"),
        )
        event_a_pk = event_dct["pk"]
        event_lst.append(event_dct)
        # joint events in time VVV ^^^
        event_mask = base_mask.copy()
        event_mask[0] = 1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 12:00:00"),
            time_end=date_parse("2015-02-05 00:00:00"),
        )
        event_b_pk = event_dct["pk"]
        event_lst.append(event_dct)
        dependency_functions = list()
        dependency_functions.append(Dependency_Funcs.dep_time)
        dependency_functions.append(Dependency_Funcs.dep_space_all)
        event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions)
        assert len(event_dependancies) == 2
        grouped_dependancies = tl.merge_event_dependencies(event_dependancies)
        assert len(grouped_dependancies) == 2
        assert event_a_pk in grouped_dependancies
        assert event_b_pk in grouped_dependancies[event_a_pk]
        assert event_b_pk in grouped_dependancies
        assert event_a_pk in grouped_dependancies[event_b_pk]

    def test_find_event_dependencies_02(self):
        base_mask = self.tl.base_mask
        tl = self.tl
        event_handler = Event_Handler()
        event_lst = list()
        event_mask = base_mask.copy()
        event_mask[0] = -1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 00:00:00"),
            time_end=date_parse("2015-02-04 00:00:00"),
        )
        event_a_pk = event_dct["pk"]
        event_lst.append(event_dct)
        # joint events in time VVV ^^^
        event_mask = base_mask.copy()
        event_mask[0] = 1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 12:00:00"),
            time_end=date_parse("2015-02-05 00:00:00"),
        )
        event_b_pk = event_dct["pk"]
        event_lst.append(event_dct)
        dependency_functions = list()
        dependency_functions.append(Dependency_Funcs.dep_time)
        dependency_functions.append(Dependency_Funcs.dep_space_all)
        event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions)
        assert len(event_dependancies) == 2
        grouped_dependancies = tl.merge_event_dependencies(event_dependancies)
        assert len(grouped_dependancies) == 2
        assert event_a_pk in grouped_dependancies
        assert event_b_pk in grouped_dependancies[event_a_pk]
        assert event_b_pk in grouped_dependancies
        assert event_a_pk in grouped_dependancies[event_b_pk]

    def test_find_event_dependencies_03(self):
        base_mask = self.tl.base_mask
        tl = self.tl

        event_handler = Event_Handler()

        event_lst = list()

        event_mask = base_mask.copy()
        event_mask[0] = 1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 00:00:00"),
            time_end=date_parse("2015-02-04 00:00:00"),
        )
        event_a_pk = event_dct["pk"]
        event_lst.append(event_dct)

        # disjoin events in time VVV ^^^

        event_mask = base_mask.copy()
        event_mask[0] = 1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-05 00:00:00"),
            time_end=date_parse("2015-02-06 00:00:00"),
        )
        event_b_pk = event_dct["pk"]
        event_lst.append(event_dct)

        # joining event, but larger mask VVV

        event_mask = base_mask.copy()
        event_mask[0:2] = 1
        event_dct = event_handler.get_event(
            event_type_name="event",
            bitmask=event_mask,
            time_start=date_parse("2015-02-03 12:00:00"),
            time_end=date_parse("2015-02-05 12:00:00"),
        )
        event_c_pk = event_dct["pk"]
        event_lst.append(event_dct)

        dependency_functions = list()
        dependency_functions.append(Dependency_Funcs.dep_time)
        dependency_functions.append(Dependency_Funcs.dep_space_all)
        # we have time_start, time_end, bitmask, and event_type_name

        event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions)
        assert len(event_dependancies) == 0

        dependency_functions = list()
        dependency_functions.append(Dependency_Funcs.dep_time)
        event_dependancies = tl.find_event_dependencies(event_lst, dependency_functions)
        superprint(pformat(event_dependancies))
        assert len(event_dependancies) == 4

        tl.generate_dependency_graph(
            event_handler.nodes,
            event_dependancies,
            filename="test_find_event_dependencies_01",
        )

        grouped_dependancies = tl.merge_event_dependencies(event_dependancies)
        assert len(grouped_dependancies) == 3
        superprint(pformat(grouped_dependancies))

        assert event_a_pk in grouped_dependancies
        assert event_b_pk in grouped_dependancies
        assert event_c_pk in grouped_dependancies


def test_reduce_holes_00():
    """ordered timeline all ts butted up against each other"""
    timeline_holes = list()
    timeline_holes.append((1, 2, np.array([1, 0, 1, 1])))
    timeline_holes.append((2, 3, np.array([1, 0, 1, 1])))
    timeline_holes.append((3, 4, np.array([1, 0, 0, 1])))
    timeline_holes.append((4, 5, np.array([1, 1, 1, 1])))
    timeline_holes.append((5, 6, np.array([1, 1, 1, 1])))
    timeline_holes.append((6, 7, np.array([1, 1, 1, 1])))

    correct_holes = list()
    correct_holes.append((1, 3, np.array([1, 0, 1, 1])))
    correct_holes.append((3, 4, np.array([1, 0, 0, 1])))
    correct_holes.append((4, 7, np.array([1, 1, 1, 1])))

    reductions, timeline_holes = reduce_holes(timeline_holes)
    superprint("\n", pformat(timeline_holes))
    for idx, hole in enumerate(timeline_holes):
        ts, te, mask = hole
        cts, cte, cmask = correct_holes[idx]
        assert ts == cts
        assert te == cte
        npt.assert_equal(mask, cmask)
    assert reductions == 3


def test_reduce_holes_01():
    """ordered timeline all ts butted up against each other"""
    timeline_holes = list()

    timeline_holes.append((0, 1, np.array([1, 1, 1, 1])))
    timeline_holes.append((1, 2, np.array([1, 0, 1, 1])))
    timeline_holes.append((2, 3, np.array([1, 0, 1, 1])))
    timeline_holes.append((3, 4, np.array([1, 0, 0, 1])))
    timeline_holes.append((4, 5, np.array([1, 1, 1, 1])))
    timeline_holes.append((5, 6, np.array([1, 1, 1, 1])))
    timeline_holes.append((6, 7, np.array([1, 1, 1, 1])))

    correct_holes = list()
    correct_holes.append((0, 1, np.array([1, 1, 1, 1])))
    correct_holes.append((1, 3, np.array([1, 0, 1, 1])))
    correct_holes.append((3, 4, np.array([1, 0, 0, 1])))
    correct_holes.append((4, 7, np.array([1, 1, 1, 1])))

    reductions, timeline_holes = reduce_holes(timeline_holes)
    superprint("\n", pformat(timeline_holes))
    for idx, hole in enumerate(timeline_holes):
        ts, te, mask = hole
        cts, cte, cmask = correct_holes[idx]
        assert ts == cts
        assert te == cte
        npt.assert_equal(mask, cmask)
    assert reductions == 3


def test_reduce_holes_02():
    """ordered timeline all ts separated a bit"""
    timeline_holes = list()

    timeline_holes.append((0, 1, np.array([1, 1, 1, 1])))
    timeline_holes.append((1, 2, np.array([1, 0, 1, 1])))
    timeline_holes.append((3, 4, np.array([1, 0, 0, 1])))
    timeline_holes.append((4, 5, np.array([1, 1, 1, 1])))
    timeline_holes.append((6, 7, np.array([1, 1, 1, 1])))

    correct_holes = list()
    correct_holes.append((0, 1, np.array([1, 1, 1, 1])))
    correct_holes.append((1, 2, np.array([1, 0, 1, 1])))
    correct_holes.append((3, 4, np.array([1, 0, 0, 1])))
    correct_holes.append((4, 5, np.array([1, 1, 1, 1])))
    correct_holes.append((6, 7, np.array([1, 1, 1, 1])))

    reductions, timeline_holes = reduce_holes(timeline_holes)
    superprint("\n", pformat(timeline_holes))
    for idx, hole in enumerate(timeline_holes):
        ts, te, mask = hole
        cts, cte, cmask = correct_holes[idx]
        assert ts == cts
        assert te == cte
        npt.assert_equal(mask, cmask)
    assert reductions == 0


def test_reduce_holes_03():
    """ordered timeline all ts separated a bit"""
    timeline_holes = list()

    timeline_holes.append((0, 1, np.array([1, 1, 1, 1])))
    timeline_holes.append((1, 2, np.array([1, 0, 1, 1])))
    timeline_holes.append((3, 4, np.array([1, 0, 0, 1])))
    timeline_holes.append((4, 6, np.array([1, 1, 1, 1])))
    timeline_holes.append((6, 7, np.array([1, 1, 1, 1])))

    correct_holes = list()
    correct_holes.append((0, 1, np.array([1, 1, 1, 1])))
    correct_holes.append((1, 2, np.array([1, 0, 1, 1])))
    correct_holes.append((3, 4, np.array([1, 0, 0, 1])))
    correct_holes.append((4, 7, np.array([1, 1, 1, 1])))

    reductions, timeline_holes = reduce_holes(timeline_holes)
    superprint("\n", pformat(timeline_holes))
    for idx, hole in enumerate(timeline_holes):
        ts, te, mask = hole
        cts, cte, cmask = correct_holes[idx]
        assert ts == cts
        assert te == cte
        npt.assert_equal(mask, cmask)
    assert reductions == 1


def test_tlevent_00():
    event: TLEvent = dict(
        pk="1",
        event_type_name="fish",
        bitmask=eb.zeros(10),
        time_start=date_parse("2020-01-01"),
        time_end=date_parse("2020-01-02"),
    )
    superprint(type(event), event)
    assert type(event) == dict


def test_tlevent_01():
    event = TLEvent(
        pk="1",
        event_type_name="fish",
        bitmask=eb.zeros(10),
        time_start=date_parse("2020-01-01"),
        time_end=date_parse("2020-01-02"),
    )
    superprint(type(event), event)


def test_tlevent_02():
    event = TLEvent(
        pk="1",
        event_type_name="fish",
        bitmask=eb.zeros(10),
        time_start=pd.Timestamp(date_parse("2020-01-01")),
        time_end=pd.Timestamp(date_parse("2020-01-02")),
    )
    superprint(type(event), event)


def test_tlpit_00():
    pit = TLPointInTime(
        pk="1",
        name="2",
        category="aaaa",
        bitmask=eb.zeros(10),
        ts=date_parse("2020-01-01"),
        direction=Event_Direction.POSITIVE,
    )
    superprint(pit)


def test_tlpit_01():
    pit = TLPointInTime(
        pk="1",
        name="2",
        category="aaaa",
        bitmask=eb.zeros(10),
        ts=date_parse("2020-01-01"),
        direction=Event_Direction.POSITIVE,
    )
    superprint(pit)


def test_tlpit_02():
    # noinspection PyTypeChecker
    pit: TLPointInTime = dict(
        pk="1",
        name="2",
        category="aaaa",
        bitmask=eb.zeros(10),
        ts=date_parse("2020-01-01"),
        direction=str(Event_Direction.POSITIVE),  # type: ignore
    )
    superprint(pit)


def test_get_mask_sum_00():
    bask_mask = eb.zeros(8)
    pit = Point_in_Time(bask_mask)

    bitmasks = [
        eb.array([0, 0, 0, 1, 1, 0, 0, 0]),
        eb.array([0, 0, 0, 1, 1, 0, 1, 0]),
        eb.array([0, 1, 1, 1, 1, 0, 0, 0]),
        eb.array([1, 0, 0, 1, 1, 0, 0, 0]),
    ]
    for idx, bitmask in enumerate(bitmasks):
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.POSITIVE,
        )
        pit.positive_add(dct)
    value = pit.get_mask_sum()
    npt.assert_array_equal(value, eb.array([1, 1, 1, 4, 4, 0, 1, 0]))


def test_get_mask_sum_01():
    bask_mask = eb.zeros(8)
    pit = Point_in_Time(bask_mask)

    bitmasks = [
        eb.array([0, 0, 0, 1, 1, 0, 0, 0]),
        eb.array([0, 0, 0, 1, 1, 0, 1, 0]),
        eb.array([0, 1, 1, 1, 1, 0, 0, 0]),
        eb.array([1, 0, 0, 1, 1, 0, 0, 0]),
    ]
    for idx, bitmask in enumerate(bitmasks):
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.POSITIVE,
        )
        pit.positive_add(dct)
    value = pit.get_mask_sum()
    npt.assert_array_equal(value, eb.array([1, 1, 1, 4, 4, 0, 1, 0]))

    bitmasks = [
        eb.array([0, 0, 1, 1, 0, 0, 0, 0]),
    ]
    for idx, bitmask in enumerate(bitmasks):
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.NEGATIVE,
        )
        pit.negative_add(dct)
    value = pit.get_mask_sum()
    npt.assert_array_equal(value, eb.array([1, 1, 0, 3, 4, 0, 1, 0]))


def test_get_mask_sum_02():
    bask_mask = eb.zeros(8)
    pit = Point_in_Time(bask_mask)

    bitmasks = [
        eb.array([0, 0, 0, 1, 1, 0, 0, 0]),
        eb.array([0, 0, 0, 1, 1, 0, 1, 0]),
        eb.array([0, 1, 1, 1, 1, 0, 0, 0]),
        eb.array([1, 0, 0, 1, 1, 0, 0, 0]),
    ]
    for idx, bitmask in enumerate(bitmasks):
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.POSITIVE,
        )
        pit.positive_add(dct)
    value = pit.get_mask_sum()
    npt.assert_array_equal(value, eb.array([1, 1, 1, 4, 4, 0, 1, 0]))

    bitmasks = [
        eb.array([0, 0, 1, 1, 0, 0, 0, 0]),
        eb.array([0, 0, 0, 0, 0, 0, 1, 0]),
    ]
    for idx, bitmask in enumerate(bitmasks):
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.NEGATIVE,
        )
        pit.negative_add(dct)
    value = pit.get_mask_sum()
    npt.assert_array_equal(value, eb.array([1, 1, 0, 3, 4, 0, 0, 0]))


def test_get_mask_sum_03():
    bask_mask = eb.zeros(8)
    pit = Point_in_Time(bask_mask)

    bitmasks = [
        eb.array([0, 0, 1, 1, 0, 0, 0, 0]),
        eb.array([0, 0, 0, 0, 0, 0, 1, 0]),
    ]
    for idx, bitmask in enumerate(bitmasks):
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.NEGATIVE,
        )
        pit.negative_add(dct)
    value = pit.get_mask_sum()
    ecorr = eb.array([0, 0, -1, -1, 0, 0, -1, 0])
    npt.assert_array_equal(value, ecorr)


def test_get_mask_sum_03b():
    # underflow
    bask_mask = eb.zeros(8)
    pit = Point_in_Time(bask_mask)
    for idx in range(BASE_DTYPE_MAX * 2):  # negative needs two more, 127 to -128
        bitmask = eb.array([0, 0, -1, -1, 0, 0, 0, 0])
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.NEGATIVE,
        )
        pit.negative_add(dct)
    with pytest.raises(Underflow):
        value = pit.get_mask_sum()


def test_get_mask_sum_03c():
    # underflow
    bask_mask = eb.zeros(8)
    pit = Point_in_Time(bask_mask)
    for idx in range(BASE_DTYPE_MAX * 2):  # negative needs two more, 127 to -128
        bitmask = eb.array([0, 0, 1, 1, 0, 0, 0, 0])
        dct: TLPointInTime = TLPointInTime(
            pk=str(idx),
            name=str(idx),
            category="a",
            bitmask=bitmask,
            ts=date_parse("2020-01-01"),
            direction=Event_Direction.NEGATIVE,
        )
        pit.negative_add(dct)
    with pytest.raises(Overflow):
        value = pit.get_mask_sum()


@pytest.mark.skipif(dask is None, reason="could not import dask")
def test_the_gauntlet():
    # requires dask, dask[distributed]
    machine_name = "test_machine"
    dtype = "U2"
    empty_value = "  "
    test_value = ".."
    bit_total = 4000  # 100000
    bitmask_class = LiteBitmask
    time_seconds = 3600  # 86400
    range_start = datetime.datetime.strptime("2024-01-01", FORMAT_DATE_DAY)
    range_end = range_start + datetime.timedelta(seconds=time_seconds)
    eg = EventGeneration(
        time_seconds,
        bit_total,
        dtype=dtype,
        empty_value=empty_value,
        test_value=test_value,
        visualize=False,
        bitmask_class=bitmask_class,
        seed=42,
    )
    characters = []
    characters.extend(list(range(97, 122 + 1)))
    characters.extend(list(range(65, 90 + 1)))
    characters.extend(list(range(48, 57 + 1)))
    characters = list(map(chr, characters))
    event_names = eg.generate_names_n_level(characters, 3)
    events = eg.generate_non_overlapping_scattered_events_v0(event_names)
    event_lst = events.event_lst
    correct_unit_seconds = time_seconds * bit_total
    correct_possible_unit_seconds = (range_end - range_start).total_seconds() * bit_total

    import dask.dataframe as dd
    pdf = pd.DataFrame(event_lst)
    ddf = dd.from_pandas(pdf, npartitions=8)
    ddf = ddf.drop(['x', 'y'], axis=1)
    ddf['bitmask'] = ddf['bitmask'].apply(lambda b: b.to_dict(), meta=('bitmask', 'object'))
    ddf['time_start'] = ddf['ts'].apply(lambda tsi: pd.to_datetime(range_start + datetime.timedelta(seconds=tsi, microseconds=int(random.uniform(0, 1) * 1000000)), utc=False), meta=('ts', "object"))
    ddf['time_end'] = ddf['te'].apply(lambda tsi: pd.to_datetime(range_start + datetime.timedelta(seconds=tsi, microseconds=int(random.uniform(0, 1) * 1000000)), utc=False), meta=('te', 'object'))
    ddf['pk'] = ddf['name']
    ddf['event_type_name'] = 'job'
    pdf2 = ddf.compute()
    event_lst = df_to_lstofdct(pdf2)
    for event_dct in event_lst:
        event_dct['bitmask'] = LiteBitmask.from_dict(event_dct['bitmask'])

    # base_mask = bitmask_class.zeros(bit_total)
    # tl = Timeline(machine_name, range_start, range_end, base_mask)
    # possible_unit_seconds = tl.possible_unit_seconds
    # with cProfile.Profile() as pr:
    #     timeline_lst = tl.prepare_event_timeline(event_lst)
    #     timeline_dct = tl.group_timeline(timeline_lst)
    #     timeline_sorted = tl.sort_timeline(timeline_dct)
    #     mask_timeline = tl.normalize_timeline_pit(timeline_sorted)
    #     mask_timeline = tl.sum_timeline(mask_timeline, test_negative=False)
    #     # tl.print_timeline(mask_timeline, binary=True)
    #     mask_timeline = tl.flatten_timeline(mask_timeline)
    #     mask_timeline = tl.isolate_timeline_range(mask_timeline)
    #     # tl.print_timeline(mask_timeline)
    #     mag_timeline = tl.mask_timeline_to_mag_timeline(mask_timeline)
    #     consumed_unit_seconds = tl.calculate_area(mag_timeline)
    #     assert round(abs(consumed_unit_seconds - correct_unit_seconds), 4) == 0
    #     assert possible_unit_seconds == correct_possible_unit_seconds
    # profile_result = pstats.Stats(pr)
    # profile_result.sort_stats(SortKey.CUMULATIVE).print_stats(4)
    # print(f"{len(event_lst)=} {len(timeline_lst)=}")

    base_mask = bitmask_class.zeros(bit_total)
    tl = TimelineParallel(machine_name, range_start, range_end, base_mask, processes=16)
    possible_unit_seconds = tl.possible_unit_seconds
    with cProfile.Profile() as pr:
        tl.load(event_lst)
        tl.run()
        consumed_unit_seconds = tl.calculate_area()
        # assert round(abs(consumed_unit_seconds - correct_unit_seconds), 4) == 0
        # assert possible_unit_seconds == correct_possible_unit_seconds
    profile_result = pstats.Stats(pr)
    profile_result.sort_stats(SortKey.CUMULATIVE).print_stats(16)
    # print(f"{len(event_lst)=} {len(timeline_lst)=}")
    import ipdb; ipdb.set_trace()

    from dask.distributed import Client, Queue
    client = Client()
    spark: DataFrame = SparkSession.builder.appName("test_the_gauntlet").getOrCreate()
    spark.conf.set("spark.sql.session.timeZone", "UTC")
    schema = StructType(
        [
            StructField("name", StringType(), False),
            StructField("ts", TimestampType(), False),  # aurora_crayex_alerts, obtain from query
            StructField("te", TimestampType(), False),  # goes back to level1 -> table
            schema_bitmask,
        ])
    sdf = spark.createDataFrame(pdf2, schema=schema)  # if you don't provide a schema, the intervals in the bitmask won't cast right.
    sdf.show(32, truncate=False)
    pandas_partitions = Queue()

    def convert_to_pandas(iterator):
        for partition in iterator:
            print(partition)
            yield pd.DataFrame(list(partition))

    print(f"{sdf.rdd.getNumPartitions()=}")
    pdf3 = sdf.rdd.mapPartitions(convert_to_pandas).collect()

    def spark_to_multi_df(df: pd.DataFrame, address):
        with Client(address) as client:
            [future] = client.scatter([df])
            pandas_partitions.put(future)